Nanoscale silicon field effect transistors fabricated using imprint lithography
نویسندگان
چکیده
We report the fabrication and characterization of nanoscale silicon field effect transistors using nanoimprint lithography. With this lithographic technique and dry etching, we have patterned a variety of nanoscale transistor features in silicon, including 100 nm wire channels, 250-nm-diam quantum dots, and ring structures with 100 nm ring width, over a 232 cm lithography field with good uniformity. Compared with devices fabricated by the conventional electron-beam lithography, we did not observe any degradation in the device characteristics. The successful fabrication of the semiconductor nanodevices represents a step forward to make nanoimprint lithography a viable technique for the mass production of semiconductor devices. © 1997 American Institute of Physics. @S0003-6951~97!01039-5#
منابع مشابه
Vertical nanowire array-based field effect transistors for ultimate scaling.
Nanowire-based field-effect transistors are among the most promising means of overcoming the limits of today's planar silicon electronic devices, in part because of their suitability for gate-all-around architectures, which provide perfect electrostatic control and facilitate further reductions in "ultimate" transistor size while maintaining low leakage currents. However, an architecture combin...
متن کاملPii: S0167-9317(96)00097-4
Nanoimprint lithography, a high-throughput, low-cost, nonconventional lithographic method proposed and demonstrated recently, has been developed and investigated. Nanoimprint lithography has demonstrated 10 nm feature size, 40 nm pitch, vertical and smooth sidewalls, and nearly 90 ° corners. Further experimental study indicates that the ultimate resolution of nanoimprint lithography could be su...
متن کاملDoping-free nanoscale complementary carbon-nanotube field-effect transistors with DNA-templated molecular lithography.
Nanoscale carbon-nanotube field-effect transistors (CNTFETs) have been a focus of recent studies in next-generation semiconductor architecture. However, in numerous CNTFETs that have been proposed, process variations, as well as measurement fluctuations, have occurred regularly, hampering the development of these devices for practical applications. Moreover, it is difficult to control the condu...
متن کاملMultiple Nanowire Gate Field Effect Transistors
Novel metal oxide semiconductor field effect transistor (MOSFET) architectures aimed at sub IV operation with enhanced current driving capability are reported. In our design, the planar channel region in a conventional MOSFET is replaced by an array of isolated Si wires. Directional metal coverage of the two sidewalls and the top surface of each Si wire help achieve enhanced gate control. Sub I...
متن کاملSwelling behavior of nanoscale , shape - and size - specific , hydrogel particles fabricated using imprint lithography †
Recently a number of hydrogel-based microand nanoscale drug carriers have been reported including top down fabricated, highly monodisperse nanoparticles of specific sizes and shapes. One critical question on such approaches is whether in vivo swelling of the nanoparticles could considerably alter their geometry to a point where the potential benefit of controlling size or shape could not be rea...
متن کامل